Three new species of *Postia* (*Aphyllophorales*, Basidiomycota) from China

Yu-Lian Wei ¹,²* and Yu-Cheng Dai¹

¹Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
²Graduate School, Chinese Academy of Science, Beijing 100039, PR China


Three species of *Postia* (*Aphyllophorales*, Basidiomycota) from China are described as new. *Postia calcarea* is characterized by the pendent growth habit, chalky fruitbody, absence of cystidia, and by narrow and allantoid basidiospores. *Postia gloeocystidiata* has pileate basidiocarps with hispid upper surface, presence of gloeocystidia and hyphal pegs, and by narrowly cylindrical to allantoid basidiospores. *Postia subundosa* is distinguished from other species in the genus by its stipitate and pendent growth habit, cream to rust brown upper surface, large pores and hard corky to rigid context, brittle tubes, and by cylindrical to allantoid basidiospores. A key to Chinese species of *Postia* is provided.

**Key words:** Polyporales, *Postia calcarea*, *Postia gloeocystidiata*, *Postia subundosa*, taxonomy, wood-rotting fungi.

**Introduction**

*Postia* Fr. (*Aphyllophorales*, Basidiomycota) is one of the important genera of brown rot fungi, and it is characterized by an annual growth habit, a monomitic hyphal system with clamp connections, thin-walled basidiospores, and the shapes of basidiospores mainly are ellipsoid, cylindrical to allantoid. Most of them are hyaline and negative in Melzer’s reagent and Cotton Blue. However, basidiospores in *Postia caesia* (Schrad.:Fr.) P. Karst. group are greyish to bluish (they are greyish in KOH), and they are weakly amyloid in Melzer’s reagent. Species in this genus were addressed in *Oligoporus* Bref. by Gilbertson and Ryvarden (1987), and Ryvarden and Gilbertson (1994), and recently they were treated in *Oligoporus, Postia, Rhodonia* Niemelä & K.L. Larsson and *Spongipellis* Pat. (Niemelä, 2005). Because there is a dispute on the generic divisions of the species, and in the current paper we followed the wide concept by Jülich (1982), more studies especially molecular data on the phylogeny are badly needed to solve this problem.

*Corresponding author: Yu-lian Wei; e-mail: weiyulianer@hotmail.com

"Fungal Diversity"

391
Wood-inhabiting fungi, especially the poroid *Aphyllophorales* in China have been extensively studied during the last 10 years, around 230 specimens belong to *Postia* were collected from 38 forest reserves and forest parks all over China. Some species were published in previous reports (Dai, 2000; Dai and Penttilä, 2006; Dai *et al.*, 2004), but after systematic examination on these materials, 17 species were identified and three undescribed species were found. We hereby make descriptions for these new species. In addition, some of our specimens are still under investigation, and forthcoming papers will deal with them.

**Materials and methods**

Specimens were mostly collected from field trips during 1993 to 2004. Fresh characters were recorded during the field excursions. Specimens were dried properly using a mushroom dryer with ventilated temperature of 40–50°C. All the studied specimens are deposited at the herbarium of the Institute of Applied Ecology, the Chinese Academy of Sciences (IFP). Anatomy was studied, and measurements and drawings were made from slide preparations stained with Cotton Blue. The microscopic routine used in the study is as presented by Dai and Niemelä (1997). Basidiospores were measured from sections cut from the tubes. IKI stands for Melzer's reagent, KOH for 5% potassium hydroxide, and CB is the abbreviation of Cotton Blue. CB– means acyanophilous, and IKI– means inamyloid and indextrinoid. In presenting the variation in the size of the spores, 5% of the measurements were excluded from each end of the range, and are given in parentheses. In the text the following abbreviations are used: \(L\) = mean spore length (arithmetical mean of all spores), \(W\) = mean spore width (arithmetical mean of all spores), \(Q\) = variation in the \(L/W\) ratios between the specimens studied (quotient of the mean spore length and the mean spore width of each specimen), \(n\) = number of spores measured from the given number of specimens. Colour terms mostly follow Petersen (1996).

**Results**

**Key to species of *Postia sensu lato* from China**

1. Basidiocarps effused-reflexed, pileate or stipitate ............................................................... 2
2. Basidiocarp stipitate, usually pendent to dorsally attached ................................................. 3
3. Basidiocarps effused-reflexed or pileate ........................................................................... 4
4. Basidiocarps resupinate ....................................................................................................... 17
Fungal Diversity

3. Basidiocarp margin distinctly undulating, pores 1-3 per mm; basidiospores oblong-ellipsoid. ................................................................. P. subundosa Y.L. Wei & Y.C. Dai
3. Basidiocarp margin flat, pores 4-5 per mm; basidiospores broadly ellipsoid ...................... P. ceriflua (Berk. & M.A. Curtis) Jülich

4. Basidiocarps with distinct grey to bluish tints................................................................. 5
4. Basidiocarps white, cream, yellowish or brown............................................................... 6

5. Usually on gymnosperm; basidiospores > 4 µm in length ................................................................. P. caesia (Schrad.:Fr.) P. Karst.
5. Usually on angiosperm; basidiospores < 4 µm in length .......................................................... P. alni Niemelä & Vampola

6. Basidiocarps becoming brown when bruised or when dry .................................................. 7
6. Basidiocarps unchanging when bruised or when dry ............................................................ 8

7. Gloeocystidia present ............................................................................................................ P. leucomallella (Murrill) Jülich
7. Gloeocystidia absent .............................................................................................................. P. fragilis (Fr.:Fr.) Jülich

8. Basidiocarps chalky when dry .............................................................................................. P. calcarea Y.L. Wei & Y.C. Dai
8. Basidiocarps fragile, corky or woody hard when dry .............................................................. 9

9. Cystidia present ..................................................................................................................... 10
9. Cystidia absent ....................................................................................................................... 12

10. Cystidia thick-walled; pileal surface without a thin cuticle ................................................ P. amurensis Y.C. Dai & Penttilä
10. Cystidia thin-walled; pileal surface with a thin cuticle ......................................................... P. balsamea (Peck) Jülich

11. Cystidia amyloid in Melzer’s reagent, basidiospores cylindric ................................................ P. pileata (Parmasto) Y.C. Dai & Renvall
11. Cystidia inamyloid in Melzer’s reagent, basidiospores ellipsoid .............................................. P. balsamea (Peck) Jülich

12. Pores bigger, 1-3 per mm ................................................................................................... P. undosa (Peck) Jülich
12. Pores smaller, > 3 per mm ..................................................................................................... 13

13. Gloeocystidia present .......................................................................................................... P. gloeocystidiata Y.L. Wei & Y.C. Dai
13. Gloeocystidia absent ........................................................................................................... 14

14. Basidiocarps mild, upper surface greyish brown .................................................. P. tephroleuca (Fr.) Julich
14. Basidiocarps bitter, upper surface cream or yellow-brownish ............................................... 15

15. Basidiospores > 2 µm in width; pileal surface with oily drops ................................................ P. guttulata (Peck) Jülich
15. Basidiospores < 2 µm in width; pileal surface without oily drops .......................................... 16

16. Basidiocarps woody hard when dry; basidiospores oblong-ellipsoid ..................................... P. stiptica (Pers.:Fr.) Jülich
16. Basidiocarps fragile when dry; basidiospores cylindric............ *P. lactea* (Fr.:Fr.) P. Karst.
17. Basidiospores > 2 µm in width, cystidia absent.......................................................... 18
17. Basidiospores < 2 µm in width, cystidia present.......................................................... 19

18. Basidiocarps salmon pink; basidiospores 2.2-3 µm in width

.......................................................... *P. placenta* (Fr.) M.J. Larsen & Lombard

18. Basidiocarps white or cream; basidiospores 2-2.3 µm in width

.......................................................... *P. rancida* (Bres.) M.J. Larsen & Lombard

19. Cystidia thick-walled, amyloid in Melzer’s reagent.......................................................... 20

19. Cystidia thin-walled, inamyloid in Melzer’s reagent.......................................................... 20

20. Pores smaller, 5-6 per mm; basidiospores 0.8-1.1µm in width.......................... *P. simanii* (Pilát) Jülich

20. Pores bigger, 3-4 per mm; basidiospores 1-1.3 µm in width.......................... *P. hibernica* (Berk. & Broome) Jülich

**Postia calcarea** Y.L. Wei & Y.C. Dai, *sp. nov.*

(Fig. 1)

*Etymology:* calcareus, lime, referring to the chalky fruitbody.

*Carpophorum annuum, pileatum; facies pororum eburnea vel cremae; pori rotundi, 4–5 per mm. Systema hypharum monomiticum, hyphae generatoriae fibulatae, hyphae contexti 3–4.3 µm in diam. Sporae cylindricae vel allantoideae, IKI–, CB–, 4–5.4 × 1.1–1.5 µm.*

*Basidiocarps* annual, pileate, pendent, with a narrowed basal attachment, mostly solitary, soft to fibrous when fresh, without odour and taste, chalky and light in weight when dry. Pilei semicircular, up to 5 cm long, 3 cm wide, and 0.8 cm thick; margin obtuse. *Upper surface* smooth, snow-white to cream when fresh, colour unchanged when bruised or drying. *Pore surface* snow-white when fresh, unchanging when bruised, becoming cream coloured up on drying; pores round, 4–5 per mm; dissepiments thin, entire. *Section:* context white and soft when fresh, unchanging and become chalky upon drying, up to 5 mm thick. Tubes white and chalky, up to 3 mm long.

*Hyphal system* monomitic; all septa with clamp connections; generative hyphae IKI-, CB-, unchanged in KOH. *Contextual hyphae* hyaline, thick-walled with a wide lumen, rarely branched, interwoven, 3-4.3 µm in diam (n = 40/3). *Tramal hyphae* hyaline, thin- to thick-walled, occasionally branched, interwoven, 1.9-3.2 µm in diam (n = 56/3). Hyphal pegs seldom present. Cystidia and cystidioles absent. Basidia clavate, thin-walled, with a basal clamp connection and four sterigmata, 7-13 × 3.2-4.2 µm (n = 14/3). Basidioles in shape similar to basidia, but slightly shorter.

*Basidiospores* cylindrical to allantoid, hyaline, thin-walled, smooth, IKI–, CB–, (3.8–)4–4.9(–5) × 1–1.2(–1.3) µm, L = 4.24 µm, W = 1.1 µm, Q = 3.67–4.05 (n = 93/3).

*Habitat:* On fallen angiosperm trunk; fallen branch of *Tsuga.*

394
Fig. 1. *Postia calcarea* Y.L. Wei & Y.C. Dai (drawn from the holotype). a) basidiospores; b) a section through tube trama; c) hyphae from context.
**Known distribution:** Anhui and Zhejiang Province of China.


**Notes:** *Postia calcarea* is closely related to *P. perdelicata* (Murrill) M.J. Larsen & Lombard by sharing rather similar pores and basidiospores, but the latter has effused-reflexed basidiocarps which are broadly attached to the substrate, and its basidiospores are larger, (4.5–)4.8–5.8(–6.3) × (1.1–)1.2–1.5(–1.7) μm, L = 5.2 μm, W = 1.3 μm, Q = 4–4.4 (Niemelä, 2005).

*Postia calcarea* also resembles *P. tephroleuca* (Fr.) Jülich in pore size, but *P. tephroleuca* has greyish upper surface, corky basidiocarps, and in particular wider basidiospores, (3.9–)4–5.5(–6) × (1.2–)1.3–1.7(–1.8) μm, L = 4.6 μm, W = 1.4 μm (Niemelä, 2005).

*Postia ceriflua* (Berk. & M.A. Curtis) Jülich has a pendent growth habit, develops fragile that are more or less chalky when dry. So it is somewhat similar to *Postia calcarea*. But *Postia ceriflua* differs from *P. calcarea* by having oblong ellipsoid basidiospores, (3.3–)3.7–4.8(–5.3) × (1.9–)2–2.5(–2.6) μm, L = 4.1 μm, W = 2.2 μm, Q = 1.8–1.9 (Niemelä, 2005); 4–5 × 2–2.5 μm (Ryvarden and Gilbertson, 1994).

*Postia caesia* has similar basidiospores as *P. calcarea*, but has hairy and blue-grayish upper surface, bluish tubes, corky basidiocarps, lacerate dissepiments, and its spores in mass are pale grayish in KOH, and weakly amyloid Melzer’s reagent.

**Postia gloeocystidiata** Y.L. Wei & Y.C. Dai, sp. nov. (Fig. 2)

**Etymology:** *gloeocystidiata*, referring to the sterile elements in hymenia of the species.

Carpophorum annuum, pileatum; facies pororum cremea vel ravide brunnea; pori rotundi vel angulati, 3–4 per mm. Systema hypharum monomiticum, hyphae generatoriae fibulatae, hyphae contexti 2.5–4 μm in diam. Gloeocystidia clavata. Sporae cylindricae vel allantoideae, IKI–, CB–, 3.7–4.5 × 1–1.1 μm.

Basidiocarps annual, pileate, sessile, mostly solitary, soft fibrous to fibrous when fresh, without odour and taste, when dry becoming soft corky. Pilei triquetrous, projecting up 4 cm, 6 cm wide, and 4 cm thick at the base; margin obtuse. Upper surface pale grayish brown when juvenile, becoming darker with age, colour unchanged up on drying, hispid, azonate. Pore surface white to cream when fresh, colour unchanged when bruised, become
Fig. 2. *Postia gloecystidiata* Y.L. Wei & Y.C. Dai (drawn from the holotype). a) basidiospores; b) gloeocystidia; c) a section through tube trama; d) hyphae from context; e) hyphae from hispid at pileal surface.

pale yellowish brown when dry; pores round to angular, 3–4 per mm; disseipments thin, entire to slightly lacerate. *Section:* context white and soft when fresh, cream and soft coryk when dry, 1–3 cm thick. Tubes white and brittle when dry, up to 1 cm long.

*Hyphal system* monomitic; all septa with clamp connections; generative hyphae IKI–, CB–, unchanged in KOH. *Contextual hyphae* hyaline, thin- to
thick-walled with a wide lumen, rarely branched, interwoven, 2.5–4 µm in diam (n = 45/2). Hyphae of hirsute tomentum on pileal surface hyaline, thick-walled with a wide lumen, more or less straight, occasionally branched, 2.3–5.8 µm in diam (n = 24/1). Tramal hyphae hyaline, thick-walled with a wide lumen, subparallel along the tubes, 2.6–3.9 µm in diam (n = 55/2). Hyphal pegs abundant. Gloeocystidia abundant in the hymenium, clavate, thin-walled, dark blue in CB, hyaline in IKI, 13–25 × 2.9–4.9 µm (n = 34/2). Basidia clavate, thin-walled, with a basal clamp connection and four sterigmata, 11–15 × 3.4–4.7 µm (n = 16/2). Basidioles in shape similar to basidia, but slightly shorter.

Spores narrowly cylindrical to allantoid, hyaline, thin-walled, smooth, IKI–, CB–, (3.5–)3.7–4.5(–4.9) × 1–1.1(–1.2) µm, L = 4.06 µm, W = 1.04 µm, Q = 3.74–4.10 (n = 60/2).

Habitat: on dead tree or fallen branch of *Pinus*.

Known distribution: Zhejiang Province of China.

Material examined: CHINA. Zhejiang Prov., Lin’an County, Tianmushan Nature Reserve, 14.X.2004 Dai 6338 (holotype, in IFP); ibid., Dai 6327 (paratype in IFP).

Notes: *Postia gloeocystidiata* has clavate gloeocystidia in its hymenium, and it is therefore resembles *P. leucomallella* (Murrill) Jülich. But the pore surface of latter species is white to cream when fresh, and it turns yellowish to dirty brownish when strongly bruised or when dry. In addition, *Postia leucomallella* has larger basidiospores, (4.3–)4.6–6.3(–7) × 1.3–1.8 µm, L = 5.28 µm, W = 1.53 µm and wider gloeocystidia, 19–42(–68) × 4–9(–9.5) µm (Renvall, 1992).

*Postia gloeocystidiata* may be related to the *Postia alni* and *Postia caesia* group by sharing the hairy upper surface and narrowly allantoid basidiospores. But both *P. alni* and *P. caesia* have blue-gray shading at the pileal surface and in the hymenophore, and they lack cystidia (Niemelä et al., 2001).

*Postia amurensis* Y.C. Dai & Penttilä is a similar species having cystidia and allantoid basidiospores. This species was recently described from northern China (Dai and Penttilä, 2006). However, *Postia amurensis* has glabrous upper surface bearing a thin cuticle; cystidia are rarely present, and they are the real hymenial cystidia and longer (30–36 × 3.5–4.5 µm vs. 14–25 × 2.9–4.8 µm in *P. gloeocystidiata*); in addition, it occurs on angiosperm wood (Dai and Penttilä, 2006).

Macroscopically, *Postia gloeocystidiata* may be confused with *P. luteocaesia* (A. David) Jülich, because the latter has yellowish pores, and it mainly grows on *Pinus* as well, but it is different from *P. gloeocystidiata* by having larger basidiospores (4.7–6.3 × 1.6–1.9 µm, L = 5.3 µm, W = 1.7 µm, Niemelä, 2005) and absence of gloeocystidia.
Fig. 3. *Postia subundosa* Y.L. Wei & Y.C. Dai (drawn from the holotype). a) basidiospores; b) a section through tube trama, c) hyphae from context.
**Postia subundosa** Y.L. Wei & Y.C. Dai, sp. nov. (Fig. 3)

*Etymology*: subundosa, somewhat resembling *Postia undosa*.

Carpophorum annuum, pileatum, stipitatum; facies pororum cremea vel ravide brunnea; pori rotundi vel angulati, 1–3 per mm. Systema hypharum monomiticum, hyphae generatoriae fibulatae, hyphae contexti 3–6 μm in diam. Sporae cylindricae vel allantoideae, IKI–, CB–, 4.1–5.8 × 1.6–2.2 μm.

*Basidiocarps* annual, pileate, sometimes laterally stipitate, pendent, soft to fibrous when fresh, without odour and taste, hard and brittle when dry. Pilei more or less circular, sometimes semi-circular, 2.5–3 cm wide, up to 0.5 cm thick; margin acute, undulate, curved down when dry. *Upper surface* cream to rust brown with age, smooth, azonate or indistinctly sulcate, colour unchanged after drying. *Pore surface* white to cream when fresh, colour unchanged when bruised, becoming cream to pale yellowish brown up on drying; pores round to angular, 1–3 per mm; dissepiments thin, entire to slightly lacerate. *Section*: context white and soft when fresh, become hard cory to rigid when dry, 1–3 cm thick. Tubes white, brittle when dry, up to 1 cm long.

*Hyphal system* monomitic; all septa with clamp connections; generative hyphae IKI–, CB–, unchanged in KOH. *Contextual hyphae* hyaline, thin- to thick-walled with a wide lumen, occasionally branched, interwoven, 3–6 μm in diam (n = 41/4). *Tramal hyphae* hyaline, thick-walled with a wide lumen, loosely interwoven, 2–4.2 μm in diam (n = 87/4). Cystidia and cystidioles absent. Basidia clavate, hyaline, thin-walled, with a basal clamp connection and four sterigmata, 12–24 × 3.9–4.5 μm (n = 16/2). Basidioles in shape similar to basidia, but slightly shorter.

*Spores* cylindrical to allantoid, hyaline, thin-walled, smooth, IKI–, CB–, (3–)4.1–5.8(–7) × (1.4–)1.6–2.2(–2.5) μm, L = 4.85 μm, W = 1.85 μm, Q = 2.54–2.71 (n = 125/4).

*Habitat*: on fallen trunk or rotten wood of *Picea*.

*Known distribution*: Heilongjiang Province of China.

*Material examined*: CHINA. Heilongjiang Prov., Yichun, Fenglin Nature Reserve, 7.IX.2002, Dai 3628, (holotype, in IFP); ibid., Dai 3608 (paratype in IFP); ibid., Dai 3633 (paratype in IFP).

*Notes*: *Postia subundosa* is occurring on spruce wood. It resembles to *P. undosa* (Peck) Jülich by having undulate pileal margin and same size pores, and was previously treated as *P. cf. undosa* (Dai and Penttilä, 2006). However, the latter species usually has refused-reflexed basidiocarps, and its pileal surface is light coloured. The critical difference is its size of basidiospores: they are narrower in *P. undosa* (4.5–6 × 1–1.5 μm, Ryvarden and Gilbertson, 1994; (4–)4.3–5.9(–6.5) × (1.1–)1.3–1.8(–1.9) μm, L = 5 μm, W = 1.5 μm, Q = 3.2–3.6, Niemelä, 2005).

*Postia ceriflua* and *Postia lowei* (Pilát) Jülich may be sometimes confused with *P. subundosa*, but *P. ceriflua* has smaller pores (3–4 per mm).
and shorter and wider basidiospores, (3.3–)3.7–4.8(–5.3) × (1.9–)2–2.5(–2.6) μm, L = 4.1 μm, W = 2.2 μm, Q = 1.8–1.9 (Niemelä, 2005). Postia lowei can be macroscopically distinguished from P. subundosa by its smaller pores, 3–4 per mm (Gilbertson and Ryvarden 1987), and in microscope its hyphae become swollen in KOH (Renvall, 1992).


Acknowledgements

We express our gratitude to Prof. Teuvo Ahti (H, Finland) for revising the Latin description and improving the manuscript, and to Mr. Bao-Kai Cui (Shenyang, China), Dr. Kari Steffen (Helsinki, Finland), and Miss Juan Li (Shenyang, China) for companion on field trips. The study was supported by the National Natural Science Foundation of China (Project No. 30500003).

References


(Received 5 February 2006; accepted 7 September 2006)